

Scalable Manufacturing Of Electrochemical Sensors Based On Tailor-made Metal Nanoparticle Carbon Materials Applied To The Detection Of Water Pollutants

odar i ornandoz odnome

-gtq elicon for serve

15th April, 2024

OUTLINE

- Electrochemical sensors for measuring water pollutants
- Sol-gel production of functional materials
- Thick- film sensors by screen-printing
- Thin-film sensors by microfabrication
- Alternative materials for sustainable sensors

Water strategy: Opportunities

100 000

Only 40%

surface water bodies, including streams, rivers, lakes, wetlands, and reservoirs

of surfaces waters are in good status

EU Directive 2000/60/EC (2013/39/EU) – Environmental Quality Standards

Contaminants in surface waters

- Priority substances (regulated): 45 (2013) 70 (2022)
- Watch list substances: 23 (2022)
- Contaminants of emerging concern (non-regulated): > 700

Analyses currently comprise:

- 1. Sample uptake
- 2. Sample stabilisation
- 3. Sample transport
- 4. Sample storage
- 5. Use of bulky and expensive equipment (HPLC-MS, GC-MS,...)
- 6. Highly skilled personnel

Electrochemical sensors for measuring water pollutants

What can you do to improve EU water?

IoT: Smart Water

Electrochemical sensors - Microfluidics

- Compact
- Low Cost
- Low power electronics
- Low maintenance
- Decentralized
- •Wireless communication and cloud data storage

continuously monitor water quality and

Deployable analytical platforms to

assess water reuse

Sol-gel production of functional materials

P. Niu, M. Gich, A. Roig, C. Fernández-Sánchez, Metal Nanoparticle Carbon Gel Composites in Environmental Water Sensing Applications, Chem Record 2018,18, 749 – 758. DOI: 10.1002/tcr.201800011

Carbon and metal nanoparticles

W. Duan, et al., Composites of porous carbon and copper-based nanoparticles for the electrochemical analysis of chemical oxygen demand, Mat. Today Chem 24 (2022) 100899. DOI: 10.1016/j.mtchem.2022.1008997

Fabrication process

6 g material to produce ~120 electrodes

W. Duan, F. J. del Campo, M. Gich, C. Fernández-Sánchez, In-field one-step measurement of dissolved chemical oxygen demand with an integrated screen-printed electrochemical sensor, Sensors and Actuators B 369, 2022, 132304. DOI: 10.1016/j.snb.2022.132304

Electrochemical sensor for measuring Pb(II) and Cd(II)

20g nanocomposite material to manufacture ~ 450 electrodes

- Square-wave anodic stripping voltammetry
- Response time: 6 min
- Linear ranges: 1-50 ppb
- LOD: 2.3 (Cd), 1.5 (Pb) ppb

Water sample analysis

Water Samples	Heavy Metals Elements	Added Concentration (ppb)	Analyzed Concentration (ppb) ¹	Recovery (%)
Tap Water		20.0	23±2	115
	Pb(II)	50.0	58±5	117
	Cd(II)	20.0	18±4	89
		50.0	44±5	90
Waste Water	Pb(II)	5.0	5.3±0.3	106
	Cd(II)	5.0	6.0±0.9	120

 ${}^{\scriptscriptstyle 1}\!\mathsf{Mean}$ value \pm standard deviation of three replicates

P. Niu *et al.* Electrochim. Acta **2015**, *165*, 155-161 P. Niu *et al.* Microchim. Acta **2016**, *183*, 617-623

Cu-NP C SPE sensor for Chemical Oxygen Demand (COD)

Produced using a CuNP C nanocomposite ink

Sample-to-result electrochemical sensor

20 µL sample volume and 10 min analysis time

W. Duan *et al.* Sens. Actuat B **2022**, *369*, 132304C. Fernández-Sánchez, et al. EU patent application: EP21383025.0.

- COD detection by chronoamperometry
- Linear range and LOD: 50 1400 mgL⁻¹ O_2 and 28 mgL⁻¹ O_2

COD sample analysis at an urban WWTP

Technique	Effluent (mgL ⁻¹ O ₂)	Clarifier (mgL ⁻¹ O ₂)	Pretreatment (mgL ⁻¹ O ₂)	Analysis time	Pre- filtered
Cu-NP C SPE	42 ± 6	100 ± 2	228 ± 18	10 min	No
Dichromate method	37 ± 8	85 ± 18	210 ± 25	2 h	Yes

Pyrolysis / Photolithography / Etching

Thin-film sensors by microfabrication

Current / µA

Integration in a flow system

P. Niu et al. Adv. Mat. Tech. 2017, 2, 1700163 (11 pp.)

Mass production of carbon thin-film electrodes

Samples	1_effluent	2_ clarifier effluent	3_ pretreatment effluent
Chip in the modular microfluidic system (mgL ⁻¹ O ₂)	45±5	67±8	191±14
Dichromate method (mgL ⁻¹ O ₂)	37±8	85±18	210±25

W. Duan et al. Chem. Eng. J. 2022, 449, 137837

Reducing the carbon footprint in the production of carbon inks: Valorization of bread waste as the carbon source

Net amount	210 g	
Nutritional information	Mean / 100 g	
Fats	1 g	
Carbohydrates	68 g	
Sugars	0.68 g	
Dietary fiber	2.7 g	
Protein	8.6 g	
Salt	0.05 g	

Bread composition

- Product with one of the highest waste generation in several parts of the supply chain, being between 10-30 % of the food waste generated everyday in many countries.
- 2.1 million tons of bread waste are annually generated in China
- 2nd most wasted food product in UK, totalling 20 million slices of bread per day

Source: V. Kumar et al. Bioresource Tech. 369 (2023): 128449; Han Wei, et al. J. Cleaner Prod. 141 (2017): 608-611.

Alternative materials for sustainable sensors

Detection of halogenated compounds: Sucralose

W. Duan *et al.* ACS Appl. Mat & Interf. **2022**, *14*, 40182–40190
W. Duan *et al.* Electrochim. Acta **2022**, *436*, 141459

Wood residues as the carbon source

 ${\sim}80$ million ton of forestry residues are annually produced in the EU

Source: Lizundia, Erlantz, Francesca Luzi, and Debora Puglia. Green Chemistry (2022).

A- Pine; B- Chestnut; C- Oak

Highest cellulose + Lignin content – Better electrochemical performance

20 ml C ink produced from 60 g chestnut wood residues: 120 screen-printed electrodes

		∆E _P (mV)	K⁰ _{app} [*10 ⁻⁴ cm s ⁻¹]
SPE		78	90±16
SPE_C _{comercial}	Ferrocene	71	130±29

Cd(II) and Pb(II) by Differential pulse Anodic Stripping Voltammetry

	Linear range (ppb)	Sensitivity (µA/ppb)	LOD (ppb)	R
Pb ²⁺	1-100	0.015 ± 0.0005	0.37	0.994
Cd ²⁺	1-100	0.036 ± 0.002	0.15	0.991

Heavy metal detection

Samples	Sensor (ppb)		Reference values (ppb)	
	Pb (II)	Cd (II)	Pb (II)	Cd (II)
Tap water_IMB-CNM	9.2 ± 0.6	10.8 ± 0.9	10	10
WWTP Effluent	9.1 ± 0.8	9.5 ± 0.7	10	10
WWTP Pretreatment	9.0 ± 0.7	9.4 ± 0.8	10	10
Commercial sample_1	30 ± 2	19 ± 3	31.7	20.4
Commercial sample_2	55 ± 3	36.4 ± 5	63.3	40.7

tecnio catalonia ACCIÓ Generalitat de Catalunya

Thank you for your attention!

César Fernández Sánchez

cesar.fernandez@csic.es

Grupo de Transductores Químicos

Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC) www.imb-cnm.csic.es gtq.imb-cnm.csic.es

@imb_cnm and @GTQimb_cnm