

Biosensors based on Monolayer Graphene Field Effect transistors

Spring School SUSNANO

ICN2 – Barcelona – April 16th 2024

1. **Neel institute** (CNRS-Grenoble) company HQ and material synthesis (2,000 sq ft)

2. Biopolis (Biotech incubator)
Biology (P2 lab.) and electronics testing labs (1,700 sq ft)
10 employees (6 PhD)
-currently working on a pilot line industrialization

...to the biological applications of Graphene (direct coupling of graphene to living cells) 2013-2019

Leading to a unique Bioelectronic sensing platform

Growth of high quality monolayer Graphene by Chemical Vapour deposition

Mc Euen Group (Cornell)

Cost of production has shrink recently below $< 0.1 \notin / \text{cm}^2$

Rapid Scaling-up possible through Graphene Roll 2 Roll CVD / Cu

Europerixtron Aixtron,... 200 mm

Chongqing Graphene Technology Moxi

Xiamen, Wuxi, Chongqing, Ningbo, BGI

USA

Price : >100 USD / cm² in 2013..... is now in 2021 droping at 0.1 \$ /cm² makes Disposable / single use products feasible

420 mm (LG , 2019)

Korea 🕕 LG

graphene square, LG

Monolayer graphene on Parylene

3. Polymer Gas deposition2. CVD G1. Cu foil

Monolayer graphene on Parylene

Compared to graphene flakes

Higher electron mobility & No release of carbon nanomaterials in the tissues

Roll to Roll processing

Graphene-on-Polymer Pilot line at Grapheal

Monolayer graphene on Paryler

Combining properties together

Process Flow compatible with printed/flex electronic (device <<1\$) for medical IOT & Wearables

Stability of Graphene on the bandage

After 3 days on pig skin wound (Biovivo, Marcy l'Etoile) : >95% monolayer Graphene still on the polymer -> **no release of nanoparticles**

Non-toxicity of the graphene on polymer material

NAMSA [°] Test	Numéro d'étude NAMSA	
Cytotoxicité - Cytotoxicité - ISO 10993-5 MTS : Quantitative method on extract - 1 dilution	266501	\checkmark
Irritation selon ISO 10993-10 : Intracutaneous irritation in rabbit - 2 extracts	266502	\checkmark
Toxicité systémique aiguë - ISO 10993-11: IV & IP route - 5 mice/extract - 2 extracts	s 266503	\checkmark
Sensibilisation selon ISO 10993-10 : Magnusson & Kligman - 2 extracts	266504	\checkmark
Test pyrogène selon la Pharmacopée Européenne : 3 rabbits	266505	\checkmark
Génotoxicité selon l'ISO 10993-3 : Genotoxicity according to ISO 10993-3 :	266506	\checkmark

Grapheal bandage has passed tests of irritation, sensitization, systemic toxicity, cytotoxicity, genotoxicity and pyrogen toxicity according to ISO10993,

(CRO Namsa, May 2019)

Monolayer of Human Fibroblasts cultured on graphene

Graphène

100 µm

100 µm 100 µm

Contrôle

Τ0

T 14

Biostimulation of Graphene

n-vitro: Human Fibroblasts

16

24

Time (hours)

39

48

In-vivo acute wounds

Grapheak

Bioacceptance of Graphene-coated intra-cortical implants

✓ Graphene coating improved inflammation resorption

(IF staining of neurons and astrocytes)

Glial scar **lowering** w/graphene suggests long term acceptance.

Bourrier et al. Adv. Health. Mat. vol. 8, 1801331, (2019)

Electrochemical Vs IS-FET detection

The surface of graphene devices is functionalized with a probe (here an antibody) targeting a biomarker of interest.

Solution by biomolecular interaction on a graphene leads to change of electrical resistance of the device which is easy to read, store and digitalize

Direct molecular recognition leads to a ultra fast current detection

Real-time label-free detection Reminiscent to SPR* or BLI** biosensing techniques but with electronic currents instead of light beam

A state-of-the art product with cutting-edge technology

Grapheal embedded sensor technology

Grapheal 25

October 2023 - Confidential

Pitch Deck

Reading via a tablet or smartphone

We have designed and qualified a stand-alone NFC patch, capable of monitoring glucose levels in sweat

Range of Glucose concentration in Sweat

October 2023 - Confidential

Pitch Deck

1200

- ✓ Linearity and time resilience
- ✓ single chip operated (no PCB)
- ✓ battery-less
- ✓ COGS <3€</p>
- ✓ Compatible with printed electronics

Graphene acts as a field-effect-Transistor

Graphene thickness < Debye length

Efficient tuning of the charge carrier density by gating (no charge screening)

Exceptional sensitity of graphene to external potential

[HESS et al., Appl. Phsys. Lett. 2011]

Field-effect performance of Graphene-on-parylene

How to make the sensor specific ?

O A large detection spectrum enabling wide multi-probes analytical analyses

Functionalizing graphene with specific receptors allows to target specific biomarkers

Molecular interaction on a graphene leads to change of electrical resistance of the device which is easy to read, store and digitalize.

Detection principle : 2 methods

30 min

Graphene Field Effect Transistor

Working principle

Working principle of a graphene field-effect transistor (GFET). Typical ambipolar transfer characteristics showing that the type of carriers in graphene can continuously be modulated from holes (on the left, in red) to electrons (on the right, in gray) using the field effect. The charge-neutrality point (CNP) is located at the transition between the electron and hole regime, where the current is minimized.

Schematic of a liquid-gated GFET biosensor and its sensing principle (d–f). In the upper panel of (e), a receptor molecule is immobilized on the graphene surface. The plots of Isd versus Vref and Isd versus the time t are shown in the middle and lower panels, respectively. The abbreviation 'h' in red refers a measurement carried in the hole regime and 'e' for the electron regime in gray. f) (respectively d) depicts the field effect resulting from the binding of positively 41 (respectively negatively) charged target

Robotic characterization in liquids (32 wells)

Dirac voltage Shifts

0.6

0.6

_0.2 0.0 0.4

0.6

e-BIOSENSING of SARS-CoV-2 antigens

Opposite charge gives opposite signal on the biosensor

Graphene functionalization

Improvement of the functionalization

Principle of operation of Graphene Field effect Transistors Sensors

Effect of the electrolyte double layer on detection

Detection is much more challenging than annouced - Screening effect of the Saline solution

TestNpass : Graphene GFET Aptasensor multiplex platform

6 channels / No data selection Recombinant Sars-Cov-2 Nucleocapsid Protein in PBS

Digital Biosensing

Graphene Field Effect Transistors Flexible CVD graphene on polymer films

WoundLABTM

Smart bandages for wound healing monitoring **RFID & Mobile** Connectivity

RFID Smart cards / NFC

Grapheal

on-site screening

NNOVATION AWARDS

2022

Revolutionizing diagnostic by converting it into health status proof

Grapheal has developed an on-site biometric, secure, digital covid test for high-speed production of sanitary pass.

- Results in less than 5 minutes
- Minimalistic tech for limited e-waste
- Digital data stored on-chip

- 6x faster than other detection solutions
- Up to 5 molecules probed simultaneously
- Combination with biometric data

AWARDS

2022 EST OF INNOVATION

TEP 4: Add Sample

Wearables for Wound Care Management

WoundLAB

Real-time wound monitoring Protect the healing process Alert on infections and moisture levels

- > Medical Cloud
- > Telehealth Services
- Remote Monitoring
- > Hospital At-Home

Wound healing (without electrostimulation)

Placebo

diabetic mouse

Monolayer of Human Fibroblasts cultured on graphene

Graphène

100 µm

100 µm 100 µm

Contrôle

Τ0

T 14

Biostimulation of Graphene

n-vitro: Human Fibroblasts

16

24

Time (hours)

39

48

In-vivo acute wounds

Grapheak

Bioacceptance of Graphene-coated intra-cortical implants

✓ Graphene coating improved inflammation resorption

(IF staining of neurons and astrocytes)

Glial scar **lowering** w/graphene suggests long term acceptance.

Bourrier et al. Adv. Health. Mat. vol. 8, 1801331, (2019)

In-vivo implant (EPFL Courtine Lab, LANEF sponsored PhD)

✓ Recorded and spike sorted neurons with 32 sensors

5 weeks tracking: graphene = lifetime improvement

Grapheal connected bandage

Infection control, faster healing & improved therapy adherence

- 1. Ergonomic electrostimulating dressing
- 2. Combining <u>healing & monitoring</u>

- 3. Healing tracking and recording of biomarkers
- 4. Early detection of infection
- 5. medical cloud (telemedicine) App integration

Our technology based on RFID+Mobile Phone suppresses the need of a <u>battery</u> and of dedicated <u>reader</u> commonly found in Point-of Care Devices

- reduced costs, maintainance
- reduced e-waste (compared to today's technology)
- improves ergonomy
- improves access in remote areas.
- enables auto-testing by the patient

Clinical trials at Grenoble Hospital

• on April 26, 40 patients out of 60 have been tested (Nasal and Saliva sample on Grapheal sensor compared to Nasal sample in PCR) Only 15 positive case

An experienced and cross-disciplinary team from bio to digital

Executive and Management Team Vincent Bouchiat – CEO, Co-Founder & Chief

- Scientific Officer

 Former Senior Research Director at CNRS
 - 25+ years of experience in Nanotechnology & Nanoelectronics

Behnaz Djoharian – Co-Founder & Chief Digital Officer

25+ years of experience in Embedded Systems & IoT
 UGA RAISONANCE KEELABS OTIZE

Jacques Louis – Business Director

• 30+ years of experience in Medical Industry

Executive board

Wim van Criekinge Co-founder of 6+ life science startups

October 2023 - Confidential

Pitch Deck

R&D Team

Leonel Marques Biochemistry

Othmen Riadh Nanomaterials

Kokoura Mensah Physico-chemistry

Philippe Andreucci

Virginie Perrot

Sensors

cea

Co-founder of APIX Analytics & CEO of InjectPower

Mohamed Habib

Immunoassays & Clinical studies

Jan van den Berghe Co-Founder of Novalis Bio-Tech

Anindita Sahoo

Overall Potential of GRAPHEAL Tech Platform

Grapheal

EMBARK WITH US remente THE FUTURE OF e , i

NEXT

Vincent Bouchiat | CEO vbouchiat@grapheal.fr

STEP 4: Add Sample

Add 50uL of filtered Saliva sample to the corresponding well. Click 'Next'.