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1 Introduction
In this report we outline the development for the mathematical description of a quan-
tum reservoir (QR) structure comprising several superconducting quantum bits. In Sec.
2 we outline the fabricated transmon system under consideration, and a phenomeno-
logical model which captures qualitative behaviour observed in the fabricated trans-
mon system. This model is then refined and fitted to experimental data. This then
specifiesmodel parameters required tomake quantitative predictions of the fabricated
system’s behaviour. Sec. 3 assesses the computational capacity of the transmonic
system theoretically by developing and testing a framework for reservoir computing.
This framework is then applied to experimental data in Sec. 4, in which a benchmark
time-series prediction task is successfully performed. Finally, we summarise the re-
sults of this deliverable in Sec. 5, and outline the ongoing research questions that will
be pursued to further develop the results presented here.

2 Model

2.1 Experimental setup
The system under consideration consists of five transmon qubits, coupled to a copla-
nar waveguide waveguide resonator. A schematic rendering of this setup is shown in
Fig. 1. In the present experiment, each qubit’s frequency is controlled via a DC current
bias. Using an input microwave signal, the system’s transmission coefficient S21 can
be measured. Full details of the experimental realisation of this system are detailed in
[1].

It is possible to capture the qualitative behaviour of this system with a simple phe-
nomological model, described by:

Ĥ =
N

∑
j=1

[
1
2
ε jσ̂

x
j + σ̂

z
j (â+ â†)

]
+ωcâ†â. (1)

Here σ̂
x,y,z
j are the usual Pauli matrices describing the jth qubit, with each possessing a

Rabi frequency ε j. The resonator is described by a single mode oscillator with destruc-
tion operator â and frequency ωc. In the experiment, each qubit’s Rabi frequency can
be altered by coupling it to a DC line and applying a bias Φ0. The effect of this can be
observed in the dependence of the measured resonance frequency on this bias. This
is illustrated in Fig. 2, which shows both the experimentally observed resonance fre-
quency with bias, and a typical example of the qualitatively similar result predicted by
the phenomonological model.

2.2 Theoretical model
In order to make more quantitative predictions of the system’s behaviour, we must
make some refinements to the model presented above. Specifically, we wish to un-
derstand how the qubit Rabi frequencies affect the observed transmission spectrum
S21. Beginning from a first-principles model of the system [2], after restricting the res-
onator to a single photonic mode and applying the rotating wave approximation, we
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Figure 1: Upper panel: Artistic rendering of the fabricated of transmon qubits. Yellow
corresponds to insulator region, blue shows the superconducting region, while crosses
indicate the position of the Josephson junctions. Lower panel: Schematic representa-
tion of the QED circuit associated with the device depicted in the upper panel. The blue
box with open edges is a cavity resonator, and ovals with vertical arrow are the qubits.
The horizontal arrows represent the input signal, probe field and measured transmis-
sion S21. The axis is used to indicate the positions l j of the jth transmon along the rz
direction (the origin is placed after the device as the usual convention in transmission
line theory).

obtain the following Hamiltonian:

Ĥ =
N

∑
j=1

−

√
ε2 +∆2

j

2
σ̂

z
j +

g j√
ε2 +∆2

j

[εσ̂
z
j (â+ â†)−∆ j(σ̂

−
j â† + σ̂

+
j â)]+(δω − iγc/2)â†â. (2)

In this model each qubit is presumed to share an identical Rabi frequency ε , with an
eigenfrequency ω j , while the parameters ∆ j = ω j −ω0 and δω = ωc −ω0 are defined in
relation to the input signal frequency ω0. The coupling of each qubit to the resonator
cavity is described by g j , while the cavity leakage rate is given by γc.

Perturbatively expanding thisHamiltonian up to secondorder in the coupling param-
eters, the (complex) eigenfrequency for the photon energy inside the cavity becomes:

ω − iΓ/2 = ωc − iγc/2+
N

∑
j=1

g2
j

ε2 +∆2
j

∆2
j√

ε2 +∆2
j +δω − iγc/2

(3)

Physically, the shift in the frequency spectrum results from a virtual photon exciting
a qubit. For weak signal (ε → 0) and for high quality factor (γc ≪ ∆ j), we obtain the
expression:

ω = ωc +
N

∑
j=1

g2
j

ωc −ω j
. (4)
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Figure 2: Left panel shows the single tone spectrum for the resonator as the bias on
a single qubit is varied. The right panel shows that the phenomenological model’s fre-
quency dependence for both the qubits and the single photon resonance. The qualita-
tive behaviour of the latter can be seen to match the former.

The right hand side contains the sum of the half Stark shift associated to each qubit,
which corresponds to the frequency shift between the high and low power limit. As-
suming equal couplings g j = g, the external power P = h̄ωcγc(ε0/2g)2 is related to the
Rabi frequency through the Fabry-Perot-like transmittance relation associated to the
resonator:

ε
2 =

ε2
0

1+[(ω0 −ω)/(γc/2)]2
(5)

Eqs. (3) and (5) then form a self consistent set of equations for ω(ε). The nonlinear
dependency of the power on its frequency in Eq.(5) admits many possible solutions.
Consequently we expect the relation between the power and the frequency given a
particular value for the Rabi frequency to exhibit some form of bistability.

2.3 Comparison with experimental data
Using this model, it is possible to extract quantitative estimations of system param-
eters. As an example, the experimental curve shown in Fig. 3 displays a jump remi-
niscent of the theoretical model’s bistability characteristics. If we neglect the disper-
sion of the qubit frequencies, it is possible to obtain a reasonable fit with experimen-
tal data. Fig. 3 shows just such a fit with the experimental curve. To obtain this, we
assume identical detuning for the N = 5 qubits, together cavity and signal frequen-
cies ωc = ω0 = 2π × 6.6102GHz, a half Stark shift of ω|ε=0 −ωc = 2π × 9.25MHz, and
the experimentally determined cavity leakage rate γc = 2π × 1.73MHz (quality factor
Q = ωc/γc = 3820). With these parameters obtain a good quantitative agreement be-
tween theoretical calculations and the experimental data.

Such a fit however predicts values for the detuning roughly an order of magnitude
too large to be realised ∆ j = 2π × 7.77GHz, and a coupling g = 2π × 120MHz. Adjust-
ing the power to the cavity by 10 dBm, more reasonable values are obtained both for
detuning ∆ j = 2π ×0.78GHz and the coupling g = 2π ×38MHz.
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Figure 3: Dependance of the resonant frequency to input power, defining L as power in
dBm units (i.e., P = 1 mW ·10L/10). The fit obtained from the theoretical model is drawn
in green with experimental data in black.

3 Reservoir Computing Framework

3.1 Model
Having outlined the experimental setup and the theoretical model describing it, we now
turn our attention to the question of how it can be best employed as a reservoir com-
puter. In order to assess the general characteristics required of a physical system to
act as a reservoir, we initially model our transmon system using a generic spin model
with Markovian dissipation (described via the Lindblad equation). While this projection
to the idealised two-level subspace will not capture all dynamics [3–5] - particularly
when undergoing fast decay from strong bath coupling [6] - it is instructive to begin
here to asses the minimal dynamical complexity necessary for a system to serve as
a reservoir. Indeed, the precise dynamics of the reservoir are irrelevant, provided that
it possesses the essential prerequisites of non-linearity, fading memory and seperabil-
ity of processed inputs. In this regard, developing and assessing a pipeline for data
processing is best facilitated with a minimal reservoir model, under the expectation
that the more sophisticated models describing transmon behaviour specifically can be
substituted into the framework as required. Such an incremental approach also allows
for the identification of the dynamical properties which lead to an increase in compu-
tational capacity as they are incorporated.

Under this scheme, we encode our input time-series data u(t) into the parameters
of the Hamiltonian. This naturally maps to the controllable Rabi frequencies of the
transmon system outlined in Sec. 2, and avoids the complications of trying to encode
data directly into an inherently delicate quantum state. Furthermore, by encoding data
directly into the Hamiltonian, we guarantee that any expectations used for linear re-
gression will be a nonlinear function of the input data, even if it is encoded linearly into
the Hamiltonian parameters.

As an initial model Hamiltonian, we employ system of coupled qubits that has pre-
viously been shown to exhibit suitably chaotic behaviour in its [7] dynamics, with the
expectation that these will satisfy the essential properties required of the reservoir.
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Figure 4: Pipeline for reservoir computing. A datum u is encoded into the quantum
system via its Hamiltonian parameters, while other physical parameters of the model
serve as effective hyperparameters in the reservoir model. The expectations of the
system after time-evolution the act as a feature space transformation of the data, such
that these expectations can be used in combination with linear regression to predict a
target time-series Y (t).

This can also be thought of as an idealisation of the transmon system in which individ-
ual qubits are restricted to a two-level subspace. The Hamiltonian itself consists of N
qubits described by:

Ĥ(u) =
N

∑
j=1

[
−∆ j(u)σ̂d

j +
1
2
Ω j(u)σ̂ x

j

]
+ ∑

j>k
Vjkσ̂

d
j ⊗ σ̂

d
k (6)

where σ̂d
j is defined in relation to the usual Pauli operators by σ̂d

j = 1
2

(
1̂− σ̂ z

j

)
. The

datum u is encoded via the single-qubit parameters ∆ j(u) and Ω j(u). In particular, we
consider an encoding scheme where the data in encoded as a linear biasing around
some central value. That is (for example),

∆ j(u) = ∆0 +δ∆ j +u (7)

where ∆0 is a central value common to each qubit, δ∆ j is a random (but fixed) deviation
from this drawn from a normal distribution, to which the appropriately scaled datum is
added.

To incorporate dissipation we evolve with a Lindbladmaster equation, such that the
system density dynamics ρ̂ are described by

d
dt

ρ̂ =−i[Ĥ, ρ̂]+L [ρ̂] (8)

where the dissipator L is composed from σ̂
±
j = 1

2(σ̂
x
j ± iσ̂ y

j ), using:

L [ρ̂] = ∑
j

γ j

(
σ̂
+
j ρ̂σ̂

−
j − 1

2

{
σ̂
−
j σ̂

+
j , ρ̂

})
, (9)
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where γ j is the strength of dissipative coupling for each qubit. The final physical ele-
ment of the model, where each qubit is initialised in a state with random parameters
for its probability amplitude a j and relative phase φ j:

|ψ0⟩=
N⊗
j

a j |0⟩+(1−a2
j)e

−iφ j |1⟩ (10)

⟨Ô j(u)⟩= ⟨ψ0|eiĤT Ô je−iĤT |ψ0⟩ (11)

The reservoir computing for this system is then as follows. The Hamiltonian encodes
data into the quantum system, which is transferred to the state via evolution for some
time T . This is then read out from the expectations of a set of observable operators
Ô j , given by:

⟨Ô j(u)⟩= ⟨ψ0|eiĤT Ô je−iĤT |ψ0⟩ . (12)

These expectations represent a feature space transformation of the initial data, and
are used for training a linear regression model. In the present case we consider one
dimensional time-series, where the input data u(t) are used to predict some target se-
riesY (t). Using ridge regression, a set of weights W, are then calculated to produce the
best fit to the target Y , with the reservoir prediction being given by

Ypred(t) = W ·O(u(t)). (13)

Themodel’s predictive capacity is then tested by using Eq. (13)with the learnedweights
W for data not included in the original training set. The full pipeline for this process is
schematically illustrated in Fig. 4, with the codebase used for its simulation available
at [8].

3.2 Model results
In order to test the degree to which this low-dimensional approximation to transmonic
systems is able to perform prediction, we consider three distinct tasks performed on a
variety of datasets. These tasks are:

• Function synthesis: the target outcome time-series is some function of the input
time, series. i.e. if we have an input-time series u(t) then synthesis sets the target
y(tk) = f (u(tk)), where f is some (non-linear) function.

• Non-autonomous prediction: Here the outcome time-series target is to predict
the next value in the input series - y(tk) = u(tk−1).

• Autonomous prediction: As above, but in this case the target prediction for y(tk)
is then used as the input for the next point in the target series, y(tk+1).

Critically, any of the regression tasks with the benchmark datasets can only be
achieved with a nonlinear transformation of the input time-series. In this regard, they
serve as a check on the presence of the vital prerequisites for any reservoir - namely
nonlinear transformation of data and separability of that data in readout outcomes. Ex-
amples of these three tasks using a random sum of sine waves are highlighted in Fig.
5.
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Figure 5: The three categories of prediction task, using the example of a sum of ran-
dom sine-waves. Each example plot includes both the target data (blue) and reservoir
predict (orange). In both the synthesis and non-autonomous prediction the reservoir
is able to obtain excellent accuracy. For autonomous prediction the absence of mem-
ory in the simple encoding scheme leads to autonomous prediction testing predictions
rapidly failing.

For both synthesis and non-autonomous prediction, we find that excellent perfor-
mance is acheived over a wide parameter range, with the chief determinant of both
training and testing accuracy being the number of qubits employed. The effective reser-
voir model is highly tunable, with a large number of effective hyperparameters that will
impact dynamics. This includes the evolution time T , the strength of the environmen-
tal damping γ , the distribution of Hamiltonian parameters (outside of those directly
dependent on u), as well as the initial state parameterisation). Notably, we find that
learning performance is in many cases largely insensitive to the the hyperparameter
values over a reasonably large range. As might be expected however, this insensitivity
is task dependent. For the prediction of Mackey glasses, the reservoir achieves similar
performace even in the absence of interaction, while the random sinusoid task shows
marked improvement when interactions are included. The global exception to any hy-
perparameter insensitivity is for extreme damping, which when combined with a suffi-
ciently long evolution tends the system to a steady state only very weakly dependent
on the encoded data. In such a scenario performance is severely degraded. This is in
some sense an indication that the manner in which the reservoir processes informa-
tion (in this encoding scheme) is intrinsically quantum, given the fact that sufficiently
strong decoherence will render that information unrecoverable.

One weakness of the current approach is that autonomous predictions quickly di-
verge from their target in testing. This is indicative of a lack of memory in this simple
protocol. This is a natural consequence of a framework in which each datum is pro-
cessed in a separate, re-initialised evolution. Consequently the system only contains
information of the local point in the time-series it is processing, while autonomous pre-
diction benefits from some fading memory of previous points in the time-series.
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4 Transmonic Reservoir Computing
Taken together, the results detailed in the previous sections imply that the fabricated
transmon system is already capable of performing simple reservoir calculations. This
is due to the fact that the even the simple phenomological model defined in Sec. 2
is able to qualitatively capture the observed experimental input (current bias) - output
(photon resonance frequency) relationship, and is of a functionally equivalent com-
plexity to the model Hamiltonian used to perform calculations in Sec. 3. Consequently,
there is a reasonable expectation that by encoding data directly into the bias current of
the qubits, and using the resonance frequency as the readout variable, computations
can be implemented.

To demonstrate this, for each of the four qubits we extract the photon resonance
response curve from the collected spectral data shown in Fig. 6. By mapping com-
putation input data onto the domain of the bias current, these curves may then serve
as the feature space transformations illustrated in Fig 4. An example calculation di-
rectly employing this methodology is present in Fig. 7, where it is used to perform non-
autonomous prediction of a Mackey glass. In both training and testing, it is possible to
achieve excellent accuracy, providing a proof-of-principle demonstration of transmonic
reservoir computing.

5 Outlook
Starting from a universal model for qubits, we have constructed a framework in which
their capacity to act as a reservoir computer has been confirmed using a set of time-
series analysis benchmarks. We have found that with slight modification this model
is able to capture the essential features observed in a fabricated transmonic system.
Consequently, it has been possible to directly incorporate experimental data into the
reservoir framework to successfully perform calculations.

Having established this base, we foresee a number of opportunities to further im-
prove upon the results presented here. In terms of physical implementation, we expect
to employ experimental data to further refine the numerical models employed in the
computing framework. For example, the single tone spectra observed in experiments
can - after curve extraction and fitting, be used as a target for finding the optimal phys-
ical model parameters which most closely align the numerical model’s observable pre-
diction to those of the experiment. Testing computational performance in this model
will then inform the optimal experimental regime for performing reservoir calculations.

More generally, the present numerical models may benefit from a more sophisti-
cated treatment of environmental interactions. At present the Lindbladian dissipators
use to model this presume a Markovian character to dynamics, while more sophisti-
cated more sophisticated techniques such as the stochastic Liouville von-Neumann
equation [6, 9] endow the physical dynamics with memory. This feature not only is
required to more accurately match experimental observation, but also represents a po-
tential computing resource that must be properly modeled to be exploited. A related
point is the failure of the autonomous prediction task in this setup, as it requires some
memory in the system linking processed data points.
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Figure 6: Extracting the photon resonance frequency from spectral data. First amedian
filter is applied, from which a ‘best guess’ for the resonance frequency at each current
value is extracted. A response curve is then fitted from these points, to be employed
as a feature space transformation for the computation.
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Figure 7: Mackey glass non-autonomous prediction task, using the single photon res-
onance frequency as the readout variable.
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