

CATRIN Czech Advanced Technology and Research

Institute

Electrochemical biosensors as an emerging data collection tool for plant phenotyping and agriculture

Lukáš Spíchal

The Czech Advanced Technology and Research Institute, Palacký University Olomouc, Czech Republic

lukas.spichal@upol.cz

Monitoring of environmental interactions of plants

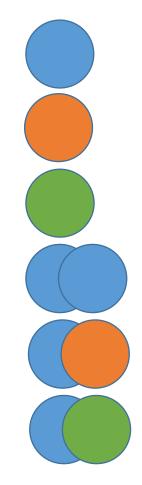
GENOTYPE ENVIRONMENT INTERACTION High-throughput **High-precision** In vitro bioassaying **Plant-based assays** Whole plant analysis PHENOTYPE

p

Key words: Phenotype / Non-invasive / Bioassaying / Automation / High-throughput/precission / controlled conditions

Phenotyping Group The Czech Advanced Technology and Research Institute of Palacký University Olomouc

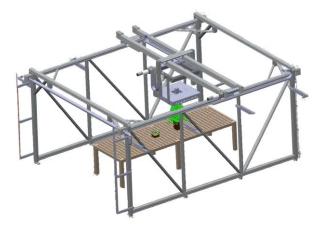
What can we do



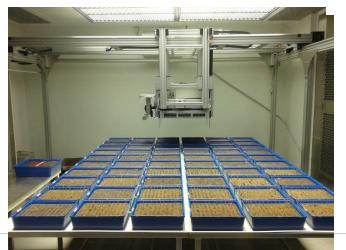
olophen

phenotyping technologies & methods

- High-throughput
- High-precision
- Affordable

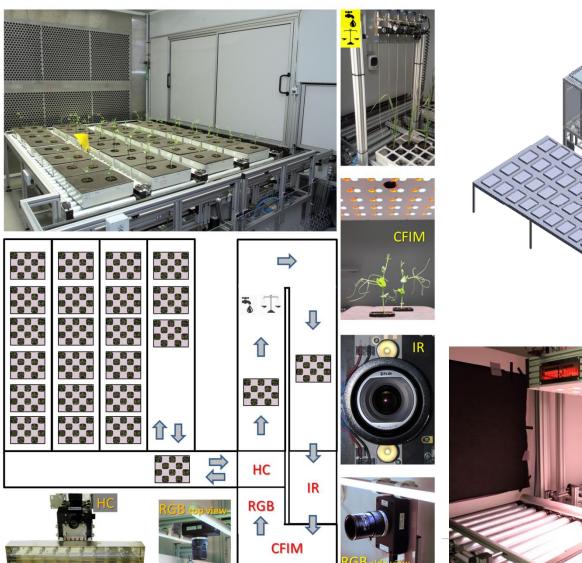

Palacký University Olomouc

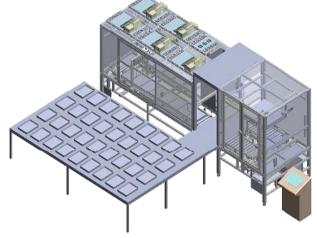
EDUCATION PARTNER

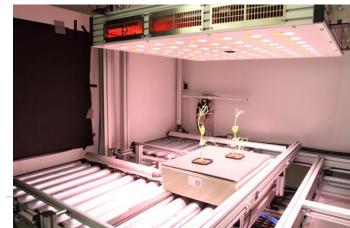


Top view imaging system XYZ PlantScreen[™]

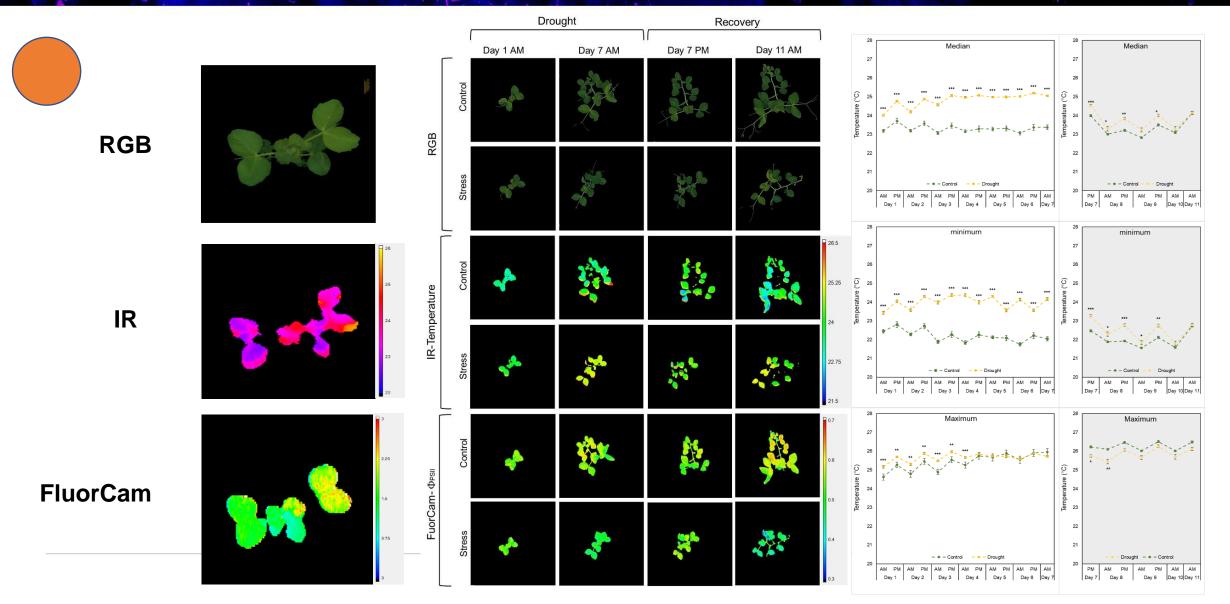
- Controlled conditions
- plant growth sensor (RGB top view high-resolution camera with homogenous LED lightning)
- sensors of physiological responses:
 - FluorCam unit Chl flurescence kinetic analysis
 - hyperspectral unit (VIS 380-900 nm)
- capacity: 7.5 square metres (528 culture multiwell plates, 64 trays, 1280 standardized Arabidopsis pots)


OloPhen




OloPhen Conveyor PlantScreen[™] system


- Controlled conditions
- three RGB cameras, FluorCam, thermoimaging, acclimation cabinet, automatized pot weighing and watering
- capacity: 640 plants for topview experiments, 64-32 plants for three-views experiments


Humplík JF, Lazar D, Husičková A, Spíchal L (2015) Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses – a review. *Plant Methods*, 11:29.

ATRIN

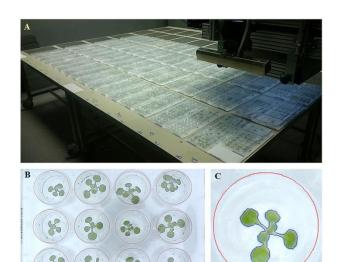
Blicharz et al. (2021). Phloem exudate metabolic content reflects the response to water-deficit stress in pea plants (Pisum sativum L.). Plant J.

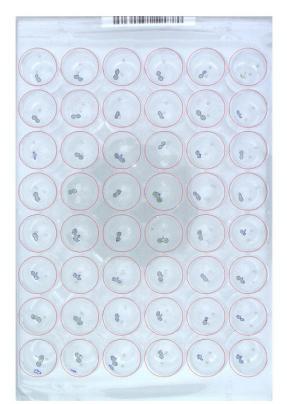
What if	1 G x 1 E x 10 R = 10 plants	G genotype
you want?	1 G x 2 E x 10 R = 50 plants	E environmental condition
J	5 G x 2 E x 10 R = 100 plants	C compound
	1 C x 5 G x 2 E x 10 R = 100 plants 5 C x 5 G x 2 E x 10 R = 500 plants	•
	$5 C \times 5 G \times 2 E \times 10 R = 300 plants$ 5 C x 5 G x 2 E x 10 R = 1500 plants	c compound concentration
	5 G x 2 E x 3 e x 10 R = 4500 plants	e environmental condition level
	5 G x 2 E x 3 e x 50 R = 22500 plants	R repetition
T1 >	T2 T3 T4 T	T timepoint

What if you want do it in 2 weeks?

In vitro bioassays – Shoot growth response

- Analyses of effect on shoot area of Arabidopsis
 - Stimulation/Inhibition of shoot growth
 - normal conditions / Interaction with stress conditions
 - Salt, temperature, nutrition, drought, chemicals, pathogen response




An Automated Method for High-Throughput Screening of *Arabidopsis* Rosette Growth in Multi-Well Plates and Its Validation in Stress Conditions

🚊 Nuria De Diego¹, 🗅 Tomáš Fürst¹, 🖆 Jan F. Humplík^{1,2}, 🖆 Lydia Ugena¹, 🚊 Kateřina Podlešáková¹ and 🚊 Lukáš Spíchal¹

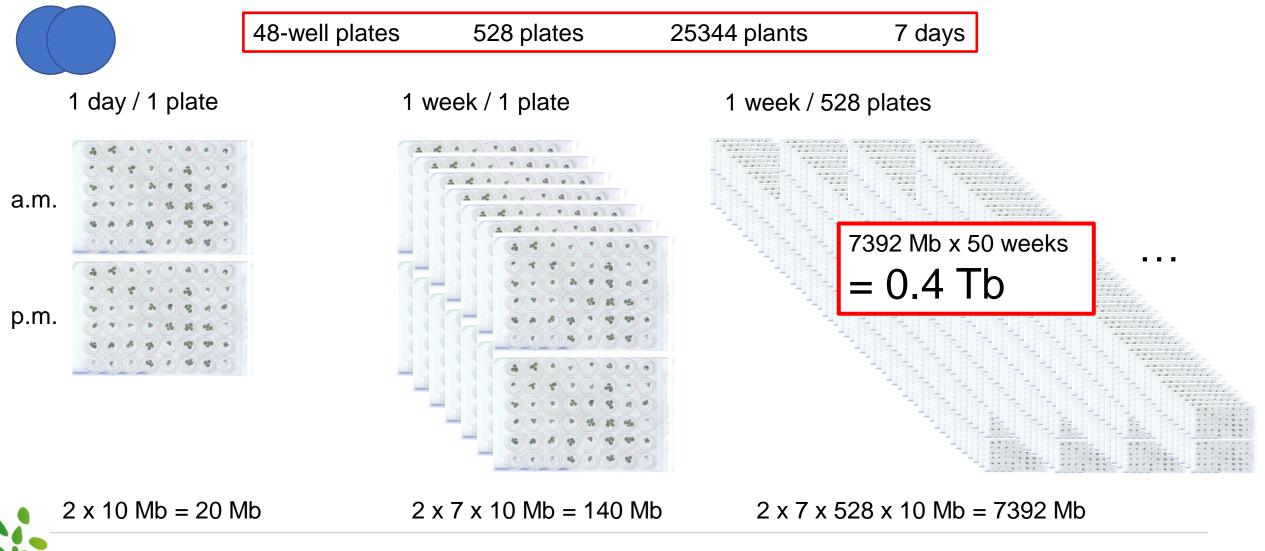
¹Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia

²Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia

"This approach will allow simultaneous testing of a large number of potentially bioactive compounds in a wide range of concentrations and/or genotypes, under various growth conditions." (De Diego et al., 2017)

OloPhen

In vitro bioassays – Shoot growth response


Ugena et al., 2018

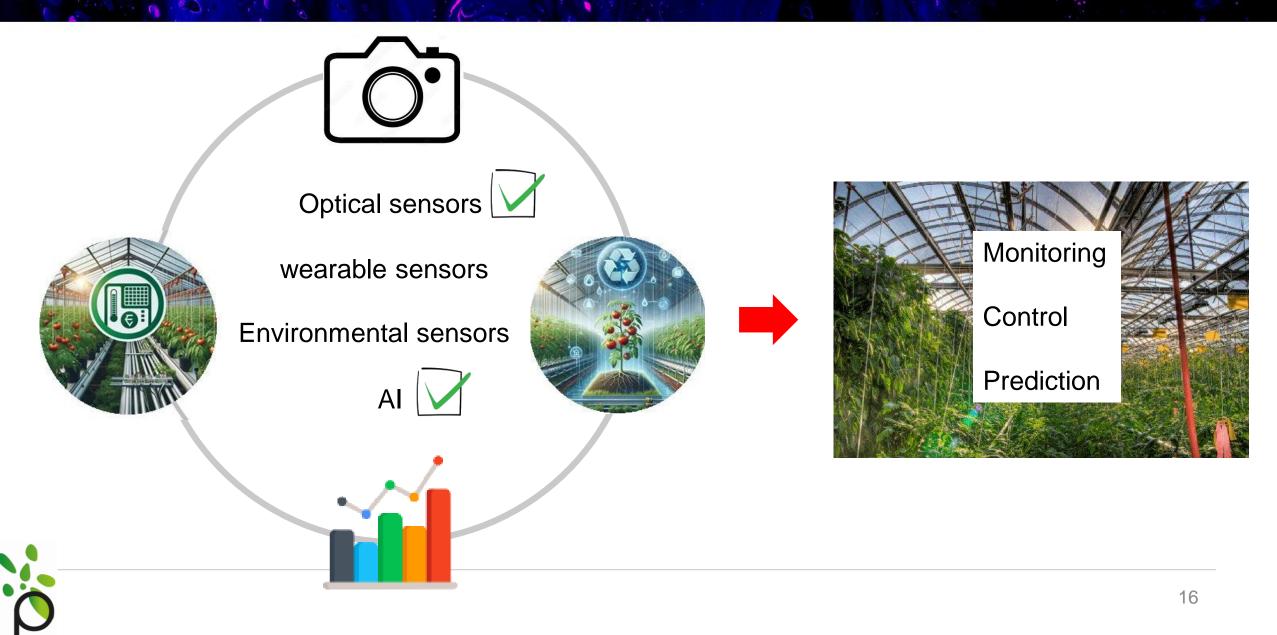
Type of well plate	No. plants	Replicates	Platform capacity	Total plants	No. variants	Assay duration
6-Well Plates	6	3		2880	160	14 days
12-Well Plates	12	2	480 Plates	5760	240	9 days
24-Well plates	24	1		11520	480	9 days
48-well plate	S		528 plates	25344 pla	ants	7 days

OloPhen

Software development – Image analysis

• Color based analysis

Because the model is only as good as you train it



What we want to do

Integration of data in greenhouses / plant factories

Wearable sensors in plants – state of the art

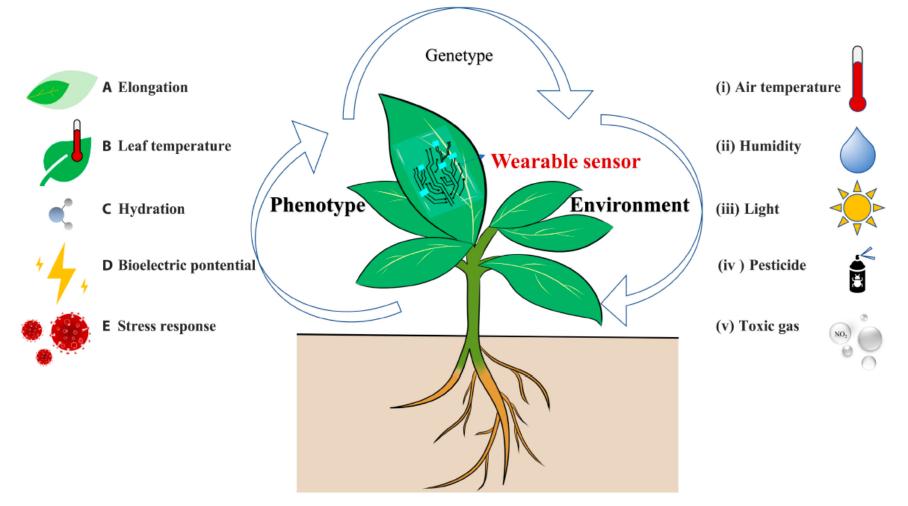


Fig.1. Wearable sensors for monitoring plant phenotypes and environment.

Zhang et al. 2023 | https://doi.org/10.34133/plantphenomics.0051

2

17

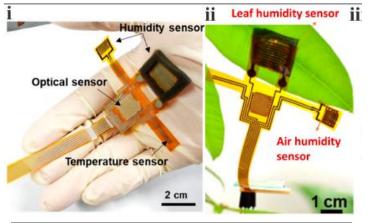
Wearable sensors in plants – state of the art

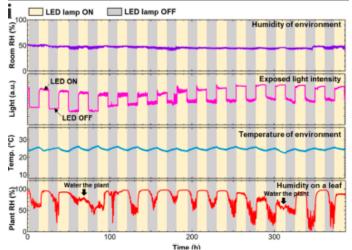
Phenotypes	Sensor	Plant	Ref.
Elongation	A Ti/Au-based strain sensor	Barley and lucky bamboo	[50]
	A chitosan-based sensor	Cucumber	[54]
	A carbon nanotube/graphite-based strain sensor	Cucurbita pepo, Solanum melongena L.	[39]
	A liquid-alloy-based sensor	Sprout	[55]
Temperature	A tag sensor	/	[56]
	A "dust" network of wireless sensors	Melon	[40]
	An RFID-based system	Pumpkin	[58]
Hydration	A PI-based sensor	Tobacco	[64]
	A GO-based humidity sensor	Epipremnum aureum	[41]
	A graphene-based sensor	Maize	[69]
	A Cu-based flexible electronic sensor	Watermelon	[70]
Bioelectric	BDD electrodes	Opuntia	[73]
potential	BDD /Nafion and BDD/ Vylon electrodes	Aloe and Opuntia	[42]
	Thermogel-based morphable ionic electrodes	Sunflower and tobacco	[48]
	Self-adhering electrodes	Dionaea muscipula, Arabidopsis thaliana, and Codariocalyx motorius	[74]
Stress response	A graphene-based sensor array	Tomato leaf	[80]
	Conductive polymer electrodes	Hosta and pothos seedling	[82]
	Conductive polymer electrodes	Grape leaf	[44]

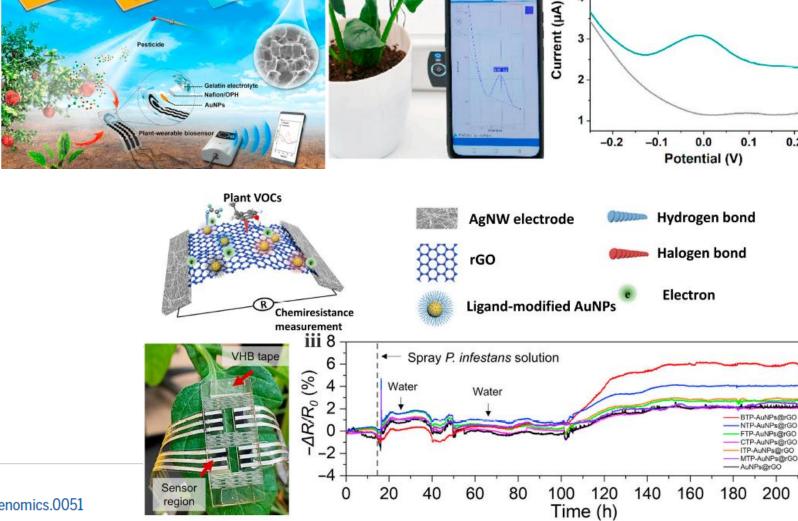
18

Wearable sensors in plants – state of the art

1201


iii


4


Methyl parathion

0.2

Control

11

LIG-based ele

Peel of

Zhang et al. 2023 | https://doi.org/10.34133/plantphenomics.0051

Thanks to

- Nuria De Diego
- Pavel Klimeš
- Carlos Acique-Perréz
- Pavel Mazura
- Markéta Ulbrichová
- Jana Nosková
- Ignacio Francisco Jasso Robles
- Xènia Roviralta Travieso
- Iñigo Saiz Fernandez
- Andrea Hybenová

- Jan F. Humplík
- Zuzana Pěkná
- Sara Salcedo Sarmiento
- Michal Polák
- Tomáš Fürst
- Lydia Ugena
- Jonathan Cardenas
- Petr Kuczman
- Adéla Hýlová
- Cintia Marchetti

Michal Stočes Jan Másner

VSB TECHNICAL |||| UNIVERSITY OF OSTRAVA Jan Zdražil