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Monitoring of environmental interactions of plants
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What can we do
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OloPhen

Top view imaging system XYZ PlantScreenTM
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• Controlled conditions

• plant growth sensor (RGB top view high-resolution camera with 

homogenous LED lightning)

• sensors of physiological responses:

• FluorCam unit – Chl flurescence kinetic analysis

• hyperspectral unit (VIS 380-900 nm)

• capacity: 7.5 square metres (528 culture multiwell plates, 64 trays, 1280

standardized Arabidopsis pots)



OloPhen

Conveyor PlantScreenTM system
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• Controlled conditions

• three RGB cameras, FluorCam, 

thermoimaging, acclimation 

cabinet, automatized pot 

weighing and watering

• capacity: 640 plants for top-

view experiments, 64-32 plants

for three-views experiments

Humplík JF, Lazar D, Husičková A, Spíchal L (2015)

Automated phenotyping of plant shoots using imaging 

methods for analysis of plant stress responses – a 

review. Plant Methods, 11:29.



High-precision phenotyping

In planta assays – stress response
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Blicharz et al. (2021). Phloem exudate metabolic content reflects the response to water-deficit stress in pea plants (Pisum sativum L.). Plant J. 

RGB

IR

FluorCam
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High-throughput

1 G x 2 E x 10 R = 50 plants

1 G x 1 E x 10 R = 10 plants

1 C x 5 G x 2 E x 10 R = 100 plants

5 C x 5 G x 2 E x 10 R = 500 plants

3 c x 5 C x 5 G x 2 E x 3 e x 10 R = 4500 plants

What if

you want?
5 G x 2 E x 10 R = 100 plants

G genotype

E environmental condition

C compound

c compound concentration

e environmental condition level

R repetition

T timepoint

3 c x 5 C x 5 G x 2 E x 3 e x 50 R = 22500 plants

3 c x 5 C x 5 G x 2 E x 10 R = 1500 plants

T1 T2 T3 T4 T…

What if you want do it in 2 weeks?



OloPhen

In vitro bioassays – Shoot growth response
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• Analyses of effect on shoot area of Arabidopsis

• Stimulation/Inhibition of shoot growth

• normal conditions / Interaction with stress conditions

• Salt, temperature, nutrition, drought, chemicals, pathogen response

„This approach will allow simultaneous testing of a large number of potentially bioactive compounds in a 

wide range of concentrations and/or genotypes, under various growth conditions.“ (De Diego et al., 2017)



OloPhen

In vitro bioassays – Shoot growth response
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48-well plates 528 plates 25344 plants 7 days

De Diego et al., 2017

6-, 12-, 24-well plates 48-well plates

Ugena et al., 2018



OloPhen

In vitro bioassays – Shoot growth response
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48-well plates 528 plates 25344 plants 7 days

1 day / 1 plate

a.m.

p.m.

2 x 10 Mb = 20 Mb

1 week / 1 plate

2 x 7 x 10 Mb = 140 Mb

1 week / 528 plates

2 x 7 x 528 x 10 Mb = 7392 Mb

…7392 Mb x 50 weeks

= 0.4 Tb



Software development – Image analysis

• Color based analysis
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• Neural network

Because the model is only as good as you train it



What we want to do
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Integration of data in greenhouses / plant factories
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Optical sensors

wearable sensors

Environmental sensors

Monitoring

Control

Prediction
AI



Wearable sensors in plants – state of the art
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Wearable sensors in plants – state of the art
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Wearable sensors in plants – state of the art
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