Objectives 1. Blood Flow Restriction (BFR) Defined 2. Effectiveness of BFR: local & system physiology 3. Mechanisms of BFR 4. Safety & Side Effects 5. Practical/Clinical Application ### **Blood Flow Restriction - Definition & History** - training entails applying a tourniquet-style cuff on the proximal aspect of a limb just prior to exercise - cuff is manually tightened or pneumatically inflated to a pressure that occludes venous flow yet allows arterial inflow - originally conceived and developed in Japan in the late 1960's by Yoshiaki Sato and termed KAATSU training - Prior to 2008 LL-BFR training equipment was scarce outside of Japan - Thus far, research results regarding the efficacy of LL-BFR have been consistent and promising VanWye 20: 4 - ### **Effectiveness of Blood Flow Restriction** - exercise + blood-flow restriction (BFR) → hypertrophic adaptations with much lower exercise (<50% 1RM) intensities than previously believed^{3,15,24,34,41,43,63,74-80} - exercise protocols with tourniquet, 81 pressurized cuff, 80 or elastic banding that is applied over the proximal portion of the upper or lower extremities 43 - Low Intensity BFR Hypertrophy = Moderate/High intensity hypertrophy ²⁰ - NOT clear if muscle hypertrophy can be optimized by BFR + ↑ external loads OR if the ceiling for maximal hypertrophy is achieved with low-moderate loads¹⁴ | Effectiveness | of BFR – Muscle Adaptation | |---|--| | Low intensity bl | ood flow restriction training: a meta-analysis | | Jeremy P. Loenneke · Jac
Pedro J. Marín · Michael
Michael G. Bemben | | | | 11 Included Studies | | | Loenneke et al. 2012 | | Table 1 Studies include | d in the | ınalysis | | | |--------------------------|----------------|----------|--------------------|-------------------------------| | Citation | Age
(years) | Gende | Training
status | Exercise mode | | Abe et al. (2005c) | <25 | M | Rec. active | Squat and knee flexion | | Abe et al. (2005b) | <25 | M | Athlete | Squat and knee flexion | | Abe et al. (2006) | <25 | M | Rec. active | Treadmill walking | | Abe et al. (2009) | <25 | M | Rec. active | Treadmill walking | | Abe et al. (2010b) | >50 | M/F | Rec. active | Treadmill walking | | Abe et al. (2010a) | <25 | M | Rec. active | Cycling | | Beekley et al. (2005) | <25 | M | Rec. Active | Treadmill walking | | Fujita et al. (2008) | <25 | M | Rec. Active | Knee extension | | Kacin and Strazar (2011) | <25 | M | Rec. Active | Unilateral knee extension | | Madarame et al. (2008) | <25 | M | Untrained | Knee extension and knee flexi | | Ozaki et al. (2011) | >50 | M/F | Untrained | Treadmill walking | | Citation | Exercise intensity | Frequency of
training | Length of
training | Protocol | Measure
hypertrop | |--------------------------|--------------------|--------------------------|-----------------------|---------------------------------------|----------------------| | Abe et al. (2005c) | 20% 1RM | 12× week | 2 weeks | 3 sets of 15 repetitions; 30 sec rest | MRI | | Abe et al. (2005b) | 20% 1RM | 14× week | 8 days | 3 sets of 15 repetitions; 30 sec rest | Ultrasoui | | Abe et al. (2006) | 50 M/Min | 12× week | 3 weeks | 52-min walking bouts; 1 min rest | MRI | | Abe et al. (2009) | 50 M/Min | 6× week | 3 weeks | 52-min walking bouts; 60 sec rest | MRI | | Abe et al. (2010b) | 67 M/Min | 5× week | 6 weeks | 20 minutes walking | Ultrasou | | Abe et al. (2010a) | $40\% VO_{2max}$ | 3× week | 8 weeks | 15 minutes cycling | MRI | | Beekley et al. (2005) | 50 M/Min | 12× week | 3 weeks | 52-min walking bouts; 60 sec rest | MRI | | Fujita et al. (2008) | 20% 1RM | 12× week | 6 days | 30-15-15-15 repetitions; 30 sec rest | MRI | | Kacin and Strazar (2011) | 15% MVC | 4× week | 4 weeks | 4 sets to volitional fatigue | MRI | | Madarame et al. (2008) | 30% 1RM | 2× week | 10 weeks | 30,15,15 repetitions; 30 sec rest | MRI | | Ozaki et al. (2011) | 45% HRR | 4× week | 10 weeks | 20 minutes walking | MRI | Effectiveness of BFR - Muscle Adaptation Low intensity blood flow restriction training: a meta-analysis bring in France. Joint M. William Prints J. Mater. Michael C. Foreiton. Moderate Prints J. Mater. Michael C. Foreiton. Moderate Prints J. Mater. Michael C. Bourse. Moderate Prints J. Mater. Michael C. Bourse. Moderate Prints J. Mater. Michael C. Bourse. Mater. Michael C. 14 ### Following Topics of Interest: - 1. Strength & Blood Flow - 2. BFR & Post Surgical Populations - 3. BFR & Neurologic Diseases - 4. BFR & Muscular Diseases ### BFR Effectiveness - Strength & Blood Flow - Subjects: n = 16 (Female) - Exercise: Unliateral Plantar Flexion - Intensity Cohorts: 25% or 50% 1 RM (1 LE BFR, 1 LE no BFR) - Duration: 4 weeks, 3x/week, 5-8 min/set - Volume: 3 sets to failure (cadence 1.5 sec ↑ & 1.5 sec ↓) - Outcomes: Isokinetic Dynamometer Strength: 1 RM - Isometric MVC - Torque @: 0.52, 1.05, 2.09 rad/sec - Blood flow: pre and post (ml/mln/100 ml) Patterson et al. 2009 16 ### BFR Effectiveness - Strength & Blood Flow Patterson et al. 200998 ⁷⁰] ■Normal □Restricted 60-1RM (kg) Change in 1 26% 1RM 10 Training Group (%1RM) 17 | Effecti | veness of BFR - | Post-Operative: Knee Arthroscopy | |------------------|---|---| | Method Variable | Value | Di Isi a di Santa | | Subjects | N = 20 (10 BFR; 10 Controls) | Blood Flow Restriction Training After Knee Arthrosco A Randomized Controlled Pilot Study | | Duration | 12 Sessions (2 wk post op)
6 weeks | A Natido Hized Controlled Flore Study | | Frequency | ~ 2x/week | Thigh Girth (cm) Proximal to Superior Patellar Pole (cr | | Туре | Control: Post-Op Protocol
BFR: Post-Op Protocol +
1. Leg Press
2. Leg Extension
3. Kick Backs | 6-cm proximal Occlusion 0.0111* | | Volume/Intensity | BFR: - 4 sets x 30/15/15/15 - 30% 1 RM - Set rest: 30 sec - Exercise rest: 1 min | Control 1 1 1 1 1 1 1 1 1 | | Tennet et al. | 2018 ¹⁰³ | Control | | Effectivenes | s of BFR | - Post-0 | perative: Knee Arthroscopy | |--------------------------|----------|------------------|----------------------------| | Subjective Outcome | BFR | Control | | | $\overline{}$ | P | P | | | KOOS | 0.000 1* | 0.0412* | | | Symptoms | 0.0018* | 0.0781 | | | ADL
OOL | 0.0004* | 0.0844
0.0755 | | | Sport | 0.0009* | 0.412* | | | VR-12
PCS | 0.0098* | 0.0451* | | | MCS | 0.03 1* | 0.4047 | | | Physical outcome
SSWV | 0.00:0* | 0.0289* | | | Stair climb | 0.00 1* | 0.2235 | | | FSST | 0.00 5* | 0.0097* | Townst et al. 2015 03 | | Sit-Stand | 0.0107* | 0.0062* | Tennet et al. 2018 | | Method Variable | Value | | Yesto | | | Total CSA | |-----------------|--|-----------------|------------------------|--------------|-------------|-------------------| | Subjects | N = 16 (8 BFR; 8 Controls)
M/F: 8/8
Age: 23 y/o | 3 | 25 - | | | Extensors Flexors | | Duration | 2 weeks (Day 3-14 post op) | (%) A | | | Ī | 1,000 | | Cuff | BFR:
Width: 90 mm
Pressure: 180 mmHg (+10/D)
Max Avg: 238 mmHg (210-260)
CONTROL: Cuff w/o inflation | Decrease in CSA | 20 -
15 -
10 - I | ; j | į | | | Exercise Type | NONE | | 5 - | | | | | Frequency | 2x/Day | | | | | | | Volume | 5x5 min
Set Rests: 3 min | | 0 I | mental group | Control gro | | # Effectiveness of BFR - Post-Operative: ACL (2) Method Verlable Value Subjects N = 24 (BFR vs No BFR) M/F: 14/10 Age: 23 y/o Duration 2 weeks (Day 3-14 post op) Cuff BFR: Width: 140 mm Pressure: 130 mmHg (+10/D) Max: 180 mmHg CONTROL: Cuff w/o inflation Exercise Type Quad Set (w. towel roll) Frequency 2x/Day Volume St5 min (5x20 repetitions) Set Rests: 3 min Iversen et al. 2016*13 ### Effectiveness of BFR - Post-Operative: ACL (3) | Method
Variable | Value | | | | | | | |--------------------|--|--|------------------------------|---|------------------------|-------------------------------|---------------------------| | Subjects | N = 44 (BFR vs No BFR)
M/F: 14/10
Age: 29 y/o | | Before
N group | surgery
R group | 16 weeks af
N group | ter surgery
R group | p-value | | Duration | 16 weeks | Knee extens | or muscle str | ength | | | | | Cuff | BFR: 180 mmHg
(operative LE only) | CC60
CC180
IM60 | 86 (14)
90 (9)
94 (21) | 84 (13)
84 (14) | 65 (13) | 76 (16)
77 (13)
84 (19) | <0.001
0.004
<0.001 | | Exercise Type | Post Operative ACL
Protocol
(see Reference for
details) | Knee flexor r
CC60
CC180
IM60 | | 92 (19)
gth
96 (21)
96 (19)
91 (18) | | 81 (14)
84 (18)
72 (11) | 0.05
0.04
0.02 | | Frequency | 6x/week | | | | | | | | Intensity | "Relatively Low" | CC60; con | centric 60°/ | sec: CC18 | 0: concentric | 180°/sec | IM60° | 25 ### Effectiveness of BFR - Post-Operative: BFR+NMES | Method
Variable | Value | | | | | | | | | |--------------------|---|---------------------|-----------|----------|---------------|---------------------|--------------|---------------------|-----------| | Subjects | N = 20 (M/F: 10/10)
Age: 29 y/o | | NMES: C | Continuo | us stimulatio | n at maxim | ully tolerab | ole intensit | У | | Cohorts | Control (CON) 4. BFR NMES BFR+NMES(COMBO) | 0 min | 4 | | 12 | 18 | 22 | 28 | 32 min | | Duration | 6 weeks | Cuff | Frequency | 4x/week | inflation
at 220 | deflation | inflatio | n deflation | inflation
at 220 | deflation | inflation
at 220 | deflation | | Cuff | 200 mmHg Width: 10.2 cm
3x4 min inflation | mm Hg | | mm Hg | | mm Hg | | mm Hg | | | NMES | 2 electrodes (5 cm²)
Pulse Length: 400 µs
Wave Frequency: 50-100 Hz
Intensity: Maximally tolerated | | | | | | | | | 26 ### Effectiveness of BFR - Post-Operative: BFR+NMES ### Effectiveness of BFR - Parkinson's Disease | Method Variable | Value | |------------------|---| | Subjects | N = 1 | | Duration | 10 weeks
Phase A: 6 weeks BFR
Phase B: 4 weeks no BFR | | Time | 5x2 min (1 min rest) | | Frequency | 3x/week | | Туре | Treadmill Walking | | Volume/Intensity | Pace 50m/min
120-160 mmHg | | | HR (Mean ± SD) | Peak Weekly BP | Peak RPE | |--------|----------------|----------------|----------| | Week 1 | 68.47 ± 1.71 | 158/90mmHg | 9 | | Week 2 | 67.23 ± 1.71 | 148/78mmHg | 7 | | Week 3 | 72.99 ± 1.71 | 142/72mmHg | 11 | | Week 4 | 69.65 ± 1.71 | 146/78mmHg | 11 | | Week 5 | 76.64 ± 1.71 | 128/74mmHg | 10 | | Week 6 | 73.27 ± 1.71 | 150/74mmHg | 9 | 28 # Effectiveness of BFR - Parkinson's Disease Timed Up & Go B A Phase Phase Phase Phase Phase Timed Up & Go B A Phase Phase Phase Doris et al. 2018¹⁰² 29 ### Mattar et al. 2014¹⁰¹ 31 32 ### **Effectiveness of Blood Flow Restriction - Conclusion** - LI-BFR: may ↑ in muscle size & strength effects; used when traditional high-load training may be inappropriate or unattainable. - 2. 30% 1RM Adaptations > 20% 1 RM Muscle Adaptations - 3. Quantifiable muscular adaptations present quickly; Training >6 weeks seem to offer greater returns in strength adaptation. - BFR training has applicability to a range of populations who may seek to progress strength while reducing loads on the associated tissues including muscular, tendinous, connective, and bony. Slyzs et al.85 | Author/Year | Study sample | Intervention type and duration | Conclusion | |----------------------------|---|---|---| | Beekley
et al. (2005) | n = 18 healthy men (21–28 years old). | 15-min walk (50 m min ⁻¹)
on the treadmill, 2 × /day,
(4-h interval between sessions)
for 3 weeks, 6 days week ⁻¹ | Aerobic training combined
with BFR, increased the
levels of BAP | | Bemben
et al. (2007) | n = 9 active men
(18-30 years old). | Two sessions of ST with BFR
and control (ST without BFR):
20% 1RM for both groups
with a 48-h interval in
random order | II training combined with
BFR decreased bone
metabolism (NTx) during
an acute bout | | Karabulut
et al. (2011) | n = 37 healthy elderly
men (58·8 \pm
0·6 years old) | ST: 3 × /week for 6 weeks | LISTG showed significant
changes in bone ALP
concentrations and bone
ALP
HISTG was most effective | | Kim
et al. (2012) | n = 30 healthy untrained
men (18-35 years old) | ST: 3 × /week for 3 weeks | than LISTG for eliciting
bone formation and
muscle hypertrophy | ## Blood Flow Restriction research is rapidly expanding. Patient demographics in which BFR research has been/will be applied: 1. Post-Operative (Clinical Trials) Lower Extremity: Knee arthroscopy, ACL, Femur Factures, Achilles tendinopathy, Meniscus repair Upper Extremity: distal radius fractures, rotator cuff repair General: joint arthroplasty, nerve injuries, muscle strains Myositisios Astronautsion Geriatricios. 107. 109 A Geriatricios. 107. 109 Adolescentios